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TECHNICAL NOTE 3343
*

SUBSONIC EDGES IN THIN-WING AND SLENDER-BODY THEORY

By Milton D. Van Dyke

SLIMMARY

A simple technique is presented for correcting the results of thin-
wing theory near round or sharp edges at which the normal component of
free-stream velocity is subsonic. The flow in planes normal to such
edges is actually brought to rest, but thin-wing theory instead predicts
infinite velocities. Furthermore, corresponding to the circulatory flow
around leading edges, thin-wing theory predicts additional singularities
that do not actually exist for round edges and exceed their true strength
for sharp edges. All these singularities grow worse if one formally
attempts to improve the solution by iteration. To correct these defects,
the formal thin-wing solution is here rendered uniformly valid by compar-
ing with exact solutions for simple profiles having the same nose shape.
In this way Lighthillts rule for correcting the surface speed on round-
nosed airfoils in incompressible flow is extended to higher approximations,
to compressible flow, to three-dimensionalwings, and to sharp edges.

* Corresponding results for slender bodies of revolution are considered
briefly; in particular, the rules for round-nosed airfoils in incompressi-
We flow are shown to apply also to round-nosed bodies of revolution.
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INTRODUCTION

The linearized theory of thin wings, which has proved so fruitful
for both stisonic and supersonic flows, is known to fail near leading and
trailing edges if the component of free-stream velocity normal to the edge
is subsonic. The flow in a plane normal to such an edge is actually
brought to rest at some point near the edge, but linearized theory predicts
infinite velocities instead.= Furthermore, there is flow around the lead-
ing edge except at one angle of attack, and linearized theory then predicts
an additional singularity that does not actually exist for round edges
and exceeds its true strength for sharp edges.

These local failures are sometimes of little practical consequence,*
since the singularities are integrable and the lift is determined correct
to a first approximation. However, it has long been know that special

G lAt round edges, linearized theory predicts only finite speeds on the
surface, but the velocity of the stream approaching the stagnation point
becomes infinite.
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. attention must be paid to the singularity in calculating the drag of thin

lifting wings (ref. 1). More recently, R. T. Jones has pointed out that
the sslneis true for nonlifting wings and has shown how to account for
the singularity in evaluating drag (ref. 2). In any case, the calculated
velocities and pressures are incorrect near such an edge.

If one attempts to refine the theoryby formally iterating upon the
first approximation, the local failure leads to serious difficulties.
In incompressible flow, the singularities are found to increase in
strength at each stage of the iteration, so that the solution, though
improved elsewhere, becomes increasingly inaccurate near the edge. More-
over, for round edges these higher terms give nonintegrable contributions
to the aerodynamic forces. Even more serious difficulties may arise in
compressible flow, where the infection spreads in some cases, so that the
formal second approximation is incorrect not only at the edges but over
the entire airfoil surface.

The remedy for all these difficulties is.clearly to base the itera-
tion upon a first approximation that is valid.even near the edges. This
would appear to require abandoning at the outset the assumption of small
disturbances, which so greatly simplifies analysis. Fortunately, however,
Lighthill has found (ref. 3) that for round edges in incompressible flow
all the results of small-disturbancetheory can be salvaged. He shows -
that a very simple rule converts the formal second-order solution of thin-
airfoil theory intoan approximation that is uniformly valid near the
edge.

Lighthillts result follows from application of his general technique
for rendering approximate solutions to physical problems uniformly valid
(ref. 4). This consists in determining progressively with each approxi-
mation a straining af the coordinates that ensures uniform convergence.
For a round-nosed airfoil in incompressible flow the straining is, to the
first approximation, a contraction of’abscissas that shifts the leading
edge by half its radius, as was noted by Munk in 1922 (ref. 5). The uni-
formly valid solution is then the same function of the strained coordi-
nates as the thin-airfoil solution was of the unstrained coordinates.

It is not yet clear how far Lighthillrs technique can be extended.
Fox has indicated (ref. 6) that it fails for higher approximations, other
nose shapes, or compressible flows, but in a recent series of seminars
at California Institute of Technolo~, T6ien suggested that proper appli-
cation of the technique will lead to success.- In any case, a quite dif-
ferent technique is used here, which is particularly suited to the study
of edges, and for that special problem is simpler than Light~ll’6 general
procedure. It consists in comparing the exact and thin-wing solutions
for simple shapes that approximate the airfoil..inthe.vicinity of the
edge. Thus LighthillTs rule for round noses is reproduced by considering
incompressible flow past a semi-infiniteparabola. This comparison tech-
nique is then readily extended to higher approximations, compressible
flows, thre.~-dimensionalwings, sharp edges, and slender bodies of revo-
lution. Attention is confined here to the practical matter of calculating

D
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surface
method.
(finite
on most
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speeds, but the whole flow field can be corrected by the same
The technique is applied here only to edges that are round

radius of curvature) or sharp (finite slope), since these occur
existing profiles. However, the procedure can, in principle, be

extended to other edge shapes and to slender bodies of other than circulsr
cross section.

The analysis of this paper is intuitive in spirit. Where convenient,
some of the results have been deduced by appeal to physical reasoning.
It is presumed that at these points the analysis could be bolstered by
more rigorous mathematical arguments.

The author is indebted to R. T. Jones for many helpful discussions
throughout the course of this work.

ROUND-NOSED AIRFOILS IN INCOMPRESSIBLE FLOW

The technique to be used can be introduced by restricting attention
first to an uncambered two-dimensional airfoil at zero angle of attack in
incompressible flow. Thin-airfoUl.theory breaks down in the vicinity of
the leading edge. There, a round-nosed airfoil can be approximatedby a
parabola. Accordingly, consider the exact velocity ”distributionover a
parabola of leading-edge radius P in a uniform stream parallel to its

‘# axis (sketch (a)). The flow speed on
the surface can be found by conformal
mapping, or simply by hlunk~srule
(ref. 7) that the surface velocity on● 1
any ellipsoid subjected to uniform
flow along a principal axis is the u*
projection of the maximum velocity

.—. —-

onto the plane tangent to the swface.
For a parabola the maximum is the free-
stream velocity, so that with x
measured downstream from the nose the Sketch (a)
surface speed ratio is

(1)

(All symibolsare defined in the Appendix.) Expanding this expression for
●

small P/x yields the formal series

(2)
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and this must be the series that would be given by thin-airfoil theory.
(It is actually the second-order thin-airfoil solution - the first-order
term being zero for a parabola - since the no=e radius of any profile
varies with the square of its thickness.) It is clear how the spurious
singularities of thin-airfoil theory arise at the leading edge.

The formal second-order thin-airfoil solution “q: for a parabola
can be converted into an approximation ~ that is uniformly valid by
multiplying it by the ratio of the exact result to the series expansion:

6 [1(-7’2 “%’-=
TJ

1
T-$+”””

(ja)

Simplifying this insofar as possible, retaining only terms of order Q/x,
gives the rule

;= (-J’’(’”$ +~) (3)

It can now be argued that this rule, derived for a parabola, applies
with some degree of approximation to any uncambered airfoil of finite
leading-edge radius P at zero angle of attack. Near the leading edge,
where the flow disturbances are large, the exact speed on any airfoil is
nearly that on a parabola of the sane nose radius; hence, the rule pro-
vides a first approximation to the disturbances there. Far from the edge,
the disturbances are small and, in general, different from those for a
parabola; there the ratio in equation (ja) is essentially unity, so that
the rule reproduces.the second-order solution for the airfoil, as it
should. Hence, the rule yields an approximation that is uniformly valid.
(It is not, of course, valid near a second edge; cotiined edges will be
considered later.)

Sketch (b)

The rule clearly applies also to
cambered airfoils at the ‘*idealZ*angle
of attack for which the stagnation
point coincides with the vertex. How-
ever, at other angles of attack the
flow field includes a component of
circulatory flow around the edge
(sketch (b)). Because of the linear
nature of incompressible flow, this
component can be treated separately.
The amount of this component is pro-
portional to the sine of the angle of

4
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attack a. measured from the ideal
angle. The thin-airfoil series for
this component can be corrected by
comparison with the circulatory flow
past apsrabola (sketch (c)). Con-
formal mapping or Munkrs rule2 gives
the speed on the upper and lower
surfaces of the parabola (counted
positive away from the vertex) as

‘3
- =Ak sinao
u (-5’2 ‘4)

Sketch

Here the factor k is a coefficient of order unity that

(c)

relates the cir-
culatory flows on the parabola and the actual airfoil; it depends on the
entire airfoil shape (and the trailing-edge condition), but its value is
not required here. Expanding this expression for small P/x yields the
formal thin-airfoil series for the circulatory component, which is, to
second order in thickness and angle of attack,

n M

q’
—= —

u *2
(5)

As before, the ratio of the exact result to its series expansion is a
factor that serves to correct the thin-airfoil solutlon for any round-
nosed airfoil. Hence the rule for the circulatory component is

:= (*)’” “ ?
(6)

Now it happens that this is essentially the same as the rule for the
other component (eq. (3b)). Consequently, the two rules can be combined.
It follows that the rule of equation (3b) applies to a round-nosed air-
foil at any angle of attack. It is, in fact, precisely Lighthill’s rule,
which he found using his technique for rendering approximate solutions
uniformly valid.

-

The accuracy of this rule near the nose of an airfoil depends upon
how closely the nose is approximated by a parabola. Lighthill has

2Munk’s rule can be used here by recognizing that the circulatory
flow about a parabola is identical with the limit of the crossflow past
an ellipse as its thickness ratio vanishes.
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considered airfoils described by analytic arcs, which means that near the
leading edge --

w“

Y= “2 + CIX*FIXe(kFoX
!3/2+ :_. . ) (7)

e being a small pa?%meter and the Fn and Cn coefficients of order unity
associated with thickness and camber, respectively; also, the angle of
attack is assumed to be of order e. Now the example of the parabola
shows that the problems of nonuniformity sre confined to~a region propor-
tional to the leading-edge radius, that is, in_which x

(
is 0(G2). In

this region the analytic airfoils of equation.(7) coinc de with parabolas
except for terms of 0(xli2), which is O(e). It seems reasonable to assert
that the surface speed will be approximated to the ssme order of accuracy
as is the airfoil shape. This means that applying the rule to the second-
order thin-airfoil solution yields a uniformly valid solution that is in
error by O(C) near the leading edge (though of course only by 0(e3) fsx
away). This agrees with Lighthill~s conclusion, based on more rigorous
analysis. However, initially uncambered airfoils (for which Cl . O) are
parabolic except for terms of O(x) = 0(e2), so that in this case the
solution rendered uniformly valid is in error by at most 0(62) near the
nose.

It would at first sight seem appropriate--tosay that Lighthillrs
rule yields a solution for analytic afrfoils correct only to zero order
near the nose (first order in the absence of camber), since only terms

*

of O(1) are found correctly, and this is the order of the undisturbed
stream. However, this occurs where the perturbations themselves are
o(1) - for example, the surface speed one leading-edge radius from the

u

nose is 0.707 of the free stream -
.,- ,-

so that the leading term in the veloc-
ity disturbance-(and hence in”the pressure coefficient) is given correctly.
With this in mind, we shall say that Lighthill?s rule renders the thin-
airfoil solution valid to first order near the nose for cambered airfoils
and to second order for initially uncambered fies.

If only first-order terms are retained, Lighthillts rule becomes
simply

(8)

This converts the linearized solution into a uniformly valid first e

approximation. Results differing fron.this only by higher-order terms
were given earlier by Goldstein (ApproximationII of ref. 8) and by
Riegels (ref. 9). It will be seen later that Riegelst form happens to be

e

both simpler and more accurate than Lighthillfs.
——

—
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It seems desirable to refine the rule so that it is correct to
second order - that is, to o(@) - even near the nose of a cambered
airfoil. This is readily done by
considering flow past a “cambered”
or shesred parabola (sketch (d)) given
by the first two terms of equation (7).
Shearing transforms a parabola into
another parabola whose vertex and nose
radius are changed only to higher
order. Hence the previous rule of
equation (3b) applies if x is
replaced by the oblique abscissa %.
Now it is easily shown that for a
point on the surface of the parabola

.— -— -

Sketch (d)

5F=x&Ecl~+. . . (9)

where CC1 is the initial slope of the caaiberline. Hence the rule
becomes

52

(

x * Ccl& 1/2
—.
u )x +p/2* Eclp

b

(lo)

where, again, the upper and lower”signs pertain to the upper and lower
surfaces of the airfoil.

.

This rule, which renders the thin-airfoil solution uniformly valid
to second order, is probably all that will ever be required in practice.
However, it can easily be extended still further if necessary. For
example, consider an uncsmbered analytic airfoil. Its nose can be
approximated by an ellipse except for terms of 0(x512), which is 0(e5)
in the region of interest. Hence, the following rule, derived from con-
sideration of the exact flow past an ellipse, renders the thin-airfoil
solution uniformly valid to

G4

(

“q:
~=~+. ~+

● The fourth-order result for

fourth order:s

A %&’

)
A= %2

(

F02
——
2U -;A= , 7 + 6FOF1

)

cambered airfoils can be obtained from

(11)

this
using the fact that a sheared ellipse is an ellipse; this will be given
later when alternative forms are considered.

● 3An ellipse corresponds to F1<O; application of this rule to cases
for which F1>O rests on an apFeal to the Frinsiple of analytic continu-
ation.
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From these rules, corresponding rules follow at once for any of the
velocity components. For example, Lighthillts.rule for the horizontal
velocity component at the surface can be dedu~ed directly from equa-

#

tion 3(b):

(“ug

:=* u ‘~ )
(12)

In calculating pressures from velocities, the full Bernoulli equation
must be used since the disturbances are not small.

REMARKS ON THE METHOD

The essence of the technique used here is to consider the exact
solution for some simple shape that approximates the airfoil in the
vicinity of its edge, where thin-airfoil theory breaks down. The formal
thin-airfoil solution can then be corrected by multiplying it by the
ratio of this locally exact solution to its series expansion, simplifying
insofar as possible. This means that the rules are essentially multipli-
cative in nature. The process of simplification tends to conceal this
fact, so that they appear to be at least partially additive.

The multiplicative nature of the rules is apparent from the view-
point of conformal mapping. Thin-airfoil theory gives a formal series
for the mapping of the profile onto a straightjline, which fails near a
round nose. With Lighthillfs rule, thin-airfoil theory is relied upon
only to map the profile onto an initially osculating parabola. The radi-
cal in equation (3b) is the speed on the parabola; the remaining factors
represent the speed-ratio associated with this intermediate mapping, by
which it is to be multiplied.

From another point of view, Lighthill~s rule implies that the airfoil
is represented by sources distributed over the surface of a parabola,
rather than along a straight line. To second.order, the perturbations
induced by the sources are proportional to the local speed of the basic
flow past a parabola, which indicates again the multiplicative nature of
the rules. This viewpoint remains valid in the subsequent extensions to
subsonic and axially symmetric flows, where conformal mapping is inap-
plicable.

.—

. .

*

ROUND-NOSED AIRFOILS IN SUBSONIC FLOW

*

The preceding results can be extended t~ compressible flow by using
solutions for subsonic flotipast parabolas and ellipses. Although no
exact solutions are-known, it seems
found so long as the flow is purely

that adequate
subsonic.

approximations can be
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At stagnation points in subsonic flow, thin-airfoil theory predicts
infinities of the same order as in incompressible flow. Although these*
infinities can be avoided by using the exact condition of tangent flow
at the surface (which in incompressible flow gives the true solution), the
result is nevertheless incorrect near stagnation points. Thus, Hantzsche
and Wendt (ref. 10) work with the perturbation stream function and impose
the exact tangency condition by means of conformal mapping, but even their
first approximation gives not zero speed at stagnation points but a veloc-
ity u/U = -M2(1 -M )-1/2. This is primarily a def’ectassociated with
the stream function, but even using the velocity potential in the same
way gives results which are no more than qualitatively correct near stag-
nation edges.

An alternative procedure for treating subsonic flows by successive
approximations is the Janzen-Rayleigh expansion in powers of M2. The
two methods are known to complement each other, being, in fact, simply
different series representations of the true solution. In particular,
the Janzen-Rayleigh result is most accurate near stagnation points, where
thin-airfoil theory breaks down. It is therefore suited for the present
purpose.

Consider again an uncambered round-nosed airfoil at zero angle of
attack. Probably the second-order thin-airfoil solution is the most that
will be treated in practice; then it is enough to consider subsonic flow
along the axis of a parabola (sketch (a)). ~ai has recently calculated

> (ref. 11) the Janzen-Rayle@h solution for a parabola including terms
in M4, and has given the surface speed in essentially the form

.

q-=
u fo+M2f= + (7+ l)tif2+fifa+ O(M) (13)

Here the fn are increasifiglycomplicated functions of x/p (where P
is the nose radius), f. being the incompressible result of equation (l).

Far behind the nose, Imai?s result reduces to

tLIP ( 7+1
-=
u -K

l+M2+~
)

M4 + M4 + 0(M8, P2/#) (14a)

This should agree to this order with thin-airfoil theory snd indeed it
9 does; second-order thin-airfoil theory (ref. E!) gives

“q:—= 1
u [ 1“-&1+M2(7+1)M2 + 4~2 + o(P2/x2)

4$4
(lhb)
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J

and the reduced result of Imai, equation (lka), is just the curtailed
expansion of this in powers of M2. Comparing these two expressions a
suggests a modification of the Janzen-Rayleigh solution that will include
the full second-order thin-airfoil result:

q ()-.Q$,kf
~2

‘fo+~fl+(7+l)~f2 +M4(f~- f~) + 0(M6)u (l~a)

where, according to Imai’s solution,4

fo=(*J’2=s’”5 != COS-’(-)
where

1

‘1=-KcOsw 2tan22sin’1+(2c 0s9+ec0sel

‘2= -*(cos 93 [4 ‘an :-13 ‘in ‘:- 4(sin e -3 ‘in ‘e)

l“g(’Coso+“(cose-3 Cos‘d

‘“g(’c“’:) -$5- 3.2c0se+7c0s2e)+

.

;(3 sin e + 8 sin 2e + 3 sin 36) +-

i(sin e - 4 sin 2e
2(2 Cos $)+

- 3 sin 3e)10g

( 9-85 cos e + 8 cos 2e + 3 cos Ze)log 2 cos ‘?

2(2 cos e + cos 2e)
J“4 Cos 0’1 J

●

o

4Here an error in sign in reference 11 has been corrected in the
expression for fl; the correction has been confirmed by Prof. Imai.

-—
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This modification seems to be a natural one; for example, the combination
(f= - fl) is simpler than its original counterpart f3. A short tabled
of the function Q(x/pjM) calculated from this approximations is given
below for 7 = 7/5.

X/p

\M

o
.4
95

f

o 0.23 0.5

0 0.5774 0.7071
0 ● 5554 . 6a71
o .5409 .6740
0 .5211 .6556
0 .k970 .6296
0 .4888 ● 5993

1 I 2

0.8165
.8007
.7902
.7746
.7492
.7023

o.8g44
.8831
.875~
.8624
.8396
.7887

5

0.9335
.9474
.9430
-9355
. g210
.8844

Applying the argument used before to equations (14) and (15) shows
that the second-order thin-airfoil solution for any uncambered analytic
profile of nose radius P in subsonic flow at zero angle of attack is
converted into a uniformly valid second approximation

~= Q(:”)[%+(’+1g:+4’2

by the rule

(k)

,

Here Q(x/p,M) is the exact subsonic solution for a parabola.. It can, in
principle be found to any desired accuracy since the Janzen-Rayleigh
method is believed to converge for purely subsonic flowse and, for axial
flow past a parabola, the flow is purely subsonic for any free-stream
Mach number less than unity. For practical purposes, the M4 approxima-
tion of equation (15) that is tabulated above will probably suffice. For
application to linearized theory, this rule reduces simply to

(16b)

which yields a uniformly valid first approxtiation.

This last rule actually applies as a first approximation to any
round-nosed airfoil at the ideal angle of attack. Corresponding rules—

*
5These values have been verified by comp&ison with a more extensive

table of the coefficients occurring in equation (13) that was kindly

% conmmnicated by Prof. hai.
6A convergence proof was reported in reference 13, but has never

been published.
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for lifting and cambered airfoils at other.angles of attack can be derived
fram the Janzen-Rayleigh solution for a parabola with circulation.7 This
can be extracted to order M=

m
from existing solutions for inclined

ellipses; however, these solutions have not yet been carried as far as
the M4 terms, which are the first to involve Y and are probably
important for numerical accuracy.

The pressure coefficient must be calculated from the velocities
according to the full Bernoulli equation for isentropic flow:

2
cp=—

YM2 {[ ‘+ W2(’-91A -’}

SHARP-NOSED AIRFOILS

(17)

Aside from round nos”es,sharp edges with finite vertex angle arise
most comnonly in practice. At sharp edges, fiin-airfoil theory predicts
logarithmically infinite velocities in place of stagnation points and,
for the circulatory component.,predicts a leading-edge szngul.aritythat
exceeds its actual strength. From a practictilpoint of view, it is
probably worthwhile to correct these shortcomings only at sharp leading
edges because at trailing edges the details will ordinarily be masked
by viscous effects. In any case, the correction is significant over a
much smaller region for a sharp edge than for a round one.

Consider first incompressible flow past~a sharp-nosed symmetrical
airfoil at zero angle of attack {sketch (e)). Clearly the flow in the

/i- mmediate vicinity of the nose is
like the flow in an augle.

–(-- &.l ‘0-’ ‘napping’‘r ‘epara;OR;On-
U variables in polar coordinates, the

surface speed is found to be given

\ /1 by
\\ /

./ /

Sketch (e)
q
- = CX*u (18)

7Because of the nonlinear nature of compressible flow, here the
“ideal” and circulatory components can no longer be treated separately,
which somewhat complicates the rules. Even in incompressible flow, if the
two components are treated together, there results instead of equation (3b)
an alternative rule that is more complicated but, of course, entirely equi- w
valent up to terms of second order. In particular, this alternative rule
requires that the coefficient k of equations (4) and (5) be known. Hence,
in the rule for subsonic flow at other angles of attack than the ideal, it

w

will be necessary to determine k as the limit of the coefficient of X-l/=
in the thin-airfoil solution as the airfoil thickness ratto vanishes
(correspondingto transition to a true parabola near the nose).

8See reference 14 for a rigorous discussion of this point.
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b

where b is the semivertex angle. In fixing the constant c, the diffi-
● culty that in the angle flow the velocity increases indefinitely upstream

can be circumvented by requiring that at any point the velocity must
approach that of the free stream as the angle b tends to zero. Thus,
it is seen that c is unity except for terms of order 5.

The connection with thin-airfoil theory follows from the fact that
for small

though not
flow in an

v

xv = evlogx=l+

uniformly near x =
angle is, to second

Vlogx+ *v*lo#x+ . . . (19)

o. Hence, the thin-airfoil
order,

~

[
-=Cl+:u (

logx+Elogx+*~2 )1
lo~ x

and it is clear how the spurious logarithmic singularities

Compsring these expressions gives a rule that renders

series for

(20)

arise.

the second-
order thin-ai=foil sulution for ~y shsrp-nosed profile uniformly valid:

~=iq+-:+ log x-~ (log x - )1~log2 x (21a)

. The corresponding first-order rule is

b
c=

(

1111
—= $T ;
u )

-:logx (21b)

These rules, unlike those for round noses, can be extended to indefinitely
high order simplyby retaining more terms in equation (20). The reason
for this is that the region of nonuniformity is exponentially small, so
that the shape of the profile (if it is composed of analytic arcs) enters
only through its initial angle.

The second of these rules applies
as a first approximation to any sharp-
nosed airfoil at its ideal angle of
attack. At other angles the flow
includes a circulatory component, which
behaves near the edge like that around
the angle shown in sketch (f). For this

. component, conformal mapping gives the
surface speed as

Sketch (f)
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q
n.28.—

+k sin ~ x z~fi-b). *--=_
u ( “)

%og x+...
& 1+21t (22)

The constant k,
that logarithmic
second order in
component is, to

which need not be identified, is of order unity, so
terms arise in thin-airfoil theory only in the terms of
a. and b. The rule for correcting this circulatory
first order,

5

h. X2(21-5) %!—=
u T

(23a)

and to second order

b

G_ . x2(fi-5)
(

“q:
u T

Note thqt according to thin-airfoil

5 “d )-~~logx (23b)

theory, the circulatory component
involves speeds with an inverse square-root singularity, the actual sin-
gularity being slightly weaker. Here the rules, in contrast to those for
round noses, are different for the two components. Hence, the thin-
airfoil solution must be treated by splitting off the terms which are
singular at least as x‘L~2, applying equation (23) to this circulatory
component, and then applying equation (21) to the remainder.

It is clear that corners on a prafile.elsewhere than at the leading
or trailing edges will lead to logarithmic singularities in thin-airfoil
theory that can, for incompressible flow, be treated by a modification of
this procedure.

At subsonic speeds, the flow at the ideal angle of attack could be
treated by considering the Janzen-Rayleigh solution for flow in an angle
(which has not yetleen calculated). However, at other angles the Janzen-
Rayleigh method certainly fails, because it would predict infinite veloc-
ities that are tolerable only in an incompressible fluid. The present
comparison method could be applied only if a truly transonic solution
were known for an inclined wedge. ..;-

COMBINED EDGES; AN EXAMPLE

The rules derived above for a single edge at the origin can clearly
be combined to treat leading and trailing edges together. In order to
use the previous results directly it is essential, as Lighthill has
pointed out, that the x axis be chosen to pass through both edges. It
is also essential to bear in mind the multiplicative nature of the rules.

—

.

-=

—
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Thus, consider incompressible flow past an airfoil with round lead-
ing and trailing edges of radii Pa and ~ located (without loss of gen-
erality) at x = -1 and x = 1, respectively. Applying equation (3a)
twice, identifying x successively with (x + 1) and (1 - x), and then
simplifying to keep no more than second-order terms (recalling that the
p are of second order) gives

[

1/2
6 1-8

](
“Q-= Pa

)
AA (24)

u.
1 :Pa(l- x) + *Pb(l+ x)

T ‘iG ’41-
-X2+

(Note that the simplification has included dropping a term Pa% /4 in

the denominator of the radical, since its contribution can be shown to be
of higher order.) This rule converts the second-order thin-airfoil solu-
tion into a uniformly valid second approximation (in the sense discussed
previously) for airfoils whose initial and final csaiberis zero, but gives
only a first approximation near a cambered edge.

In the ssne way the previous rules can be combined for higher approx-
imations and for any combination of round and sharp edges.

As an application of the rule for combined round edges, consider
incompressible flow past an ellipse of thickness ratio e at zero angle
of attack. The formal second-order solution for surface speed is

!1 11

%2—=l+C -&d-U 1-2

Applying the rule of equation (24), with Pa = ~. G2, gives

62 (L1-9
1/2

—=
u )(-X?+E2 )

1+E+*E2

and it is satisfying to see that aside from the radical, the expression

(25)

(26)
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has been simplified. This result is compared in sketch (g) with the

. . . . . . . . . . . ● ✎ ✎ ✎ ✎ “.””” “ .

/

‘“e
1’ —Exact

f! ““””* LineorL?ed fi+eay
I

----Second-order theory
/

o Cwnmtedmcond-ordw hwry

I
.- -A F

u au Ou Y

~ deg

Sketch (g)

)

exact solution and with the formal first- and second-order solutions for
an ellipse of thickness ratio e = 3/10. ‘

APPLICATION TO FINITE WINGS

The edges of a finite wing are described as subsonic or supersonic
according as.the component of free-stream velocity normal to them is
subsonic or supersonic. At subsonic edges thin-wing theory br’eaksdown
Just as it does for-two-dimensionalairfoils in subsonic”flow.g These
defects can be cortie-ctedby applying the preceding rules to the components
of velbcity in the plane normal to the edge; for, as noted by R. T. Jones
(ref. 2), for sufficiently thin wings, the flow field in the immediate
vitiinityof the edge is cylindrical (if the plan form and edge radius are
continuous) according to the simple sweepback concept. Since thin-wing

‘Thin-wing theory fails also at round supersonic edges. This defect
could probably be corrected by comparing with the solution for supersonic
flow past a parabola, which has not yet been calculated.

.

-—

w

—
v
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b

theory is a series expansion in powers of thickness, its coefficients
% can be evaluated,at vanishing thiclmess. Hence, the sweepback principle

applies here to any order.

As an example, consider supersonic flow past a flat elliptic cone
lying inside the free-stream Mach cone. The linearized thin-wing solution,
first given by Squire (ref. 15), predicts constant pressure over the entire
surface. Hurley has attempted to improve this result near the leading
edges by adding, along the foci of the e~ipse, conical line sources whose
strengbh is determined by imposing the exact tangency condition at the
leading edge (ref. 16). He has verified that the resulting shape is
approximately the desired one, though somewhat sharper near the leading
edge. For the thickest wing that.he considered, Hurleyts pressure dis-
tribution is compared in sketch (h) with the first-order result of the
Fresent method. The present solution is presumably more accurate since
the shape is not distorted and compressibility effects are accounted for

.

k’

more exactly.

.4

Gp .2

c

M.@

\
‘\

\\

\\m ~----Linearizeo’ theoty

\ .
<

– — Hurley f?wl /6)
\
\ ton+ .15 ‘ — I?esent method
\
\

\
\

\
N

N
<<

+ +. ---- -- ~
. . . . . . . . . . . . ---”J . - “-” .*.-— - — — — -—-- — .

Tfl m

8, deg

Sketch (h)

BODIES OF REVOLUTION

I

I
o

For bodies of revolution, the counterpart of thin-wing theory is
the slender-body theory introduced by Munk for the crossflow due to angle
of attack, and later extended to cover also the flow at zero angle. For
subsonic speeds this theory, too, fails near stagnation points, where it
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predicts infinite rather than zero speeds. Furthermore, for the crossflow
it predicts a nonexistent singularity at round ends and fails to predict
an actual singulszity at sharp ends. It can be corrected by simple rules
quite analogous to-those already given for wings. Only incompressible
flow will be considered here, the extension %0 subsonic speeds requiring
the solution for simple nose shapes according to the Janzen-Rayleigh
method or otherwise.

Any round-nosed body of revolution can be approximated near its nose
by a paraboloid of revolution. Munk~s rule gives the remarkable result ._
that the surface speeds for axial flow are identical on parabolas and
paraboloids of revolution, smd that the additional velocities due to angle
of attack are proportional. Hence, Lighthillts rule for round-nosed air-
foils, equation (3b), applies also to bodies of revolution. It yields,
however, only a first approximationbecause the disturbances, being
smaller than for airfoils, are of the orde”rof the nose radius (I.e., of
order e.2)rather ~~ of order ~. A second-order rule can be obtained
by fitting the nose more accurately with an ellipsoid of revolution.
Again, Munkts rule shows that the speed distributions are proportional
on ellipses and ellipsoids of revolution of the same thickness ratio.
Hence, the fourth-csrderrule for airfoils, equation (11), is the second-
order rule ‘forround-nosed bodies of revolution.

For sharp-nosed bodies, the nature of the flow near the tip can be
foundby introducing spherical polar coordinates (sket& (i)). Separating

.

, ,–

.

—

—.

.-

—

variables leads to a solution in
terms of Legentie functions for the

.

axial flow and associated Legendre
functions for the crossflow, the
functions being of nonintegral order. . - _
Requiring, as in plane flow, that
the solution reduce to a uniform

Sketch (i)

stream as the cone angle
shows that on the surface
immediate vicinity of the
radial velocity component

qr—=
u

c cos a S-l + k sin a cos u Xn-l

and the azimuthal component, the form

-k sin a sin u xn-~

Here, again, c is a constant that is unity to first order and
constant of order unity. The tangency condition requires that
be the first roots of

5 vanishes
in the
tip the
has the form

(27a)

—

(27b) “

kiss
m and n
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Pm~ [Cos(n - 5)] = o

Pnl’ [COS(YC- 5)] = o 1

19

(28a)

where the derivatives of the Legendre functions are considered as func-
tions of m and n. Methods for calculating these roots numerically have
been discussed by Pal (ref. 17) and by Siegel et al. (ref. 18). Using
a formula due to Schelkunoff (ref. 19), it can be shown that to a first
approximation for small cone angle 5

m= 1+1235 +o@410g5)

n= 1 -*52+ 0(54 logb) }

(28b)

Since n - 1 is slightly negative, the velocities associated with the
crossflow are only weakly infinite at the tip, in contrast to the nearly
inverse square-root singularity associated with angle of attack for a
sharp-nosed airfoil.

Expanding equation (27a) according to equation (19) leads again to

b rules for correcting slender-body theory. As in plane flow, the axial
flow and crossflow must be treated separately. The rule for correcting—
the axial component is found to be, to first-order,

This could be extended to second order by determining

(29a)

the next term in the
series for m. The rule for correcting either the radial or azimuthal
component of velocity associated with the crossflow is, to second order,

(L n-l “q: )L & log x—=
Ux T ‘2

(29b)

. The corresponding first-order rule is the same without the logarithmic
term.

*
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ALTERNATIVE FORMS

The radical
(-)”2

OF RUIES FOR ROUND NOSES
4

0
appearing in the rules for round noses in

incompressible flow is, for a parabola or paraboloid, the cosine of the
—

surface angle Tl measured from the x axis. Therefore, the first-order
rule for airfoils,

—

equation (8)j can be written alternatively as

()L _ ~o~ ~ “~ 1. “q;—=
u u

Jl+tan2q u
(30)

and this is Riegels? rule (ref. 9). Aside from its simplicity, it has an
unexpected advantage over Lighthillts form. ...Thetwo rules differ only by
higher-order terms for shapes other than a parabola, so that there is no
a priori reason to prefer either. However, it happens that Riegelst form
gives the exact result for an ellipse as well as for a parabola,l” whereas

—

Lighthill~s does not. Since airfoil profiles ordinarily resemble ellipses
more than parabolas, Riegelsr form might be expected to be more accurate,
and this appears to be the case; For exeuiple,sketch (j) shows that
Riegels~ rule gives a much more accurate first-order solution than -—
Lighthillts for .anNACA 0012”airfoil at zero angle of attack.

---- Limarized theay

— — First order, Ughthillb mb +
o firstcwier, Rlegels’ ruk Y

.9
0 .2 ,4 .6 .8

ftoctim of chtud

Sketch (j)

—

.

.

10This is clear from Munk’s rule (together with the fact that line-
arized theory predicts a constant speed on an ellipse that is equal to
the true maximum value).

.
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Despite its simplicity and remarkable accuracy, however, Riegels~
rule must be regsrded as less basic than Lighthill?s from a theoretical
point of view. Only Lighthillts rule can, in principle, be extended to
indefinitely high.order, to subsonic speedst or to other nose shapes.
A further defect of Riegelst rule is that the nose exerts a spurious
influence even at remote points if the local airfoil slope is appreciable.
To this extent it fails to render the solution uniformly valid.

Nevertheless, the practical advantages of Riegelsl rule sre so great
as to suggest artificially modifying the higher-order rules accordingly.
Thus, Lighthillfs second-order rule for uncsmbered airfoils, equation (3b),
can be rewritten by analogy with Riegels~ rule as

( 31)

Both forms are so accurate that graphical comparison is scsrcely possible.
Insteadj they are compared in the following table with the exact values
for a lb-percent-thick symmetrical Joukowski airfoil at zero angle of
attack:

●

L

Fraction
of chord

0.005
.0075
.0125
.025
.05
.10

Second order,
Lighthill

0.7530
.8590
.9852

1.1249
1.2137
1.2k89

Second order;
alternative

0.7363
.8440
.9748

1.1226
1.2185
1.2568 7

Exact
(ref. 20)

o ● 7379
.844g
99738

1 ● 1190
J.2132
1.2524

The superiority of the alternative form is now confined to the humediate
vicinity of the nose (which has a radius of 0.023 chord). Similarly, for
csniberedairfoils, the second-order rule can be recast in the form

(32)

where K is the initial angle of the camber line; and comparison with. its counterpart in equation (10) illustrates the greater simplicity of
the alternative forms, which is perhaps their chief virtue in the higher-
order approximations.’--

Again, both these rules are exact for ellipses, whereas their
decessors are not. Since this is so, the fourth-order rule (which
from considering ellipses) is obtained simply by retaining another

pre-
results
term
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in the formal
airfoils this

and it can be

series expansion of the cosine.- For initially uncambered
leads to

(33)

verified that up to terms of fourth order this agrees with
the less compact form of equation (11). The corresponding rule for
cambered airfoils is

64
[

“q: 1 “q:
—=cos(q-K)y+ ~y tan2(q - k) 1-~tan4(q - fc)
u (34)

For round-nosed bodies of revolution, equation (31) is the first-
order rule and equation (33) the second-order rule. These are exact for
ellipsoids of revolution as well as paraboloids. It can therefore be
anticipated that they will be generally more accurate than the previous
forms.

The rule for subsonic speeds can also be artificially manipulated
in an attempt to preserve
tion (16a) is replaced by

k—=
u

where 5(V) is
of the surface
tions (15) by

the advantages of Riegels~ rule. Thus, equa-

the subsonic speed.ratio on a parabola expressed
angle q. It is related to the function Q(x/p)

‘(q)=4 c0t2‘)
because for a parabola P/x = 2 tan2 ~. This rule differs from

( 35)

in terms
of equa-

( 36)

its pre-
decessor only by higher-order terms and is designed to reduce to equa-
tion

Ames

(31) at zero Mach nuniber.

Aeronautical Laboratory
National Advisory Committee

Moffett Field, CalIf.,
for Aeronautics
Aug. 16, 1954

=—

.

—

.

.
w —
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APPENDIX

SYMBOLS

Cp pressure coefficient (pressure increment divided by free-
stresm dynsmic pressure)

c1 initial slope of camber line divided by e

c coefficient that is unity to first order

Fo, Fl, . . . coefficients in expansion of airfoil thickness

fo,fl,fajf~ coefficients of Janzen-Rayleigh expansion for Q

k coefficient of order unity

M free-stream Mach number

m first root of Pmf[cos(fi- 5)] = 0, where Pm(cos f3)is
the Legendre function

n first root of Pnl’[cos(fi- b)] = O, where PmL(cos 6) is
the associated Legendre function

.
Q speed ratio on parabola in subsonic axial flow as function

of x/P

z speed ratio on parabola in subsonic axial flow as function
of surface angle q

~ speed at body suface

6 uniformly valid appromtion to q

!! 11
~ formal thin-wing or slender-body solution for q

qlJq.2) a ● ●
first-order, second-order, etc., approximation to q

u free-stresm speed

u component of surface velocity in x direction

.
x coordinate along airfoil chord or body axis, usually

measured from edge
u

Y coordinate of airfoil surface perpendicular to chord

a angle of attack

ao angle of attack measured from ideal.angle
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(1 . M2)1/2

adiabatic exponent of gas

semivertex angle of pointed airfoil or body

thickness parameter of airfoil

surface angle measured from x axis

polar angle

initial angle of’camber line

(see eq. (11))

edge radius of round-ended airfoil or body

azimuthal angle
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